Answer:
To be in the top 1% of the runners, the man has to run the 400 meters in at most 55.768 seconds.
Step-by-step explanation:
When the distribution is normal, we use the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:
How fast does a man have to run to be in the top 1% of runners?
The lower the time, the faster they are. So the man has to be at most in the 1st percentile, which is X when Z has a pvalue of 0.01. So he has to run in at most X seconds, and X is found when Z = -2.327. Then
To be in the top 1% of the runners, the man has to run the 400 meters in at most 55.768 seconds.