Answer:
![v_B=3.78* 10^5\ m/s](https://img.qammunity.org/2021/formulas/physics/college/l2e322wlrrc2jx3ftefwiln0q31fzl8rhr.png)
Step-by-step explanation:
It is given that,
Charge on helium nucleus is 2e and its mass is
![6.63* 10^(-27)\ kg](https://img.qammunity.org/2021/formulas/physics/college/awh4cdegapritwnbqlk603sf11f0gvaq9w.png)
Speed of nucleus at A is
![v_A=6.2* 10^5\ m/s](https://img.qammunity.org/2021/formulas/physics/college/ig3k0celkb9u5zdcxgadh5htmtgfsxb9d6.png)
Potential at point A,
![V_A=1.5* 10^3\ V](https://img.qammunity.org/2021/formulas/physics/college/qdfylgx6tpjy6s8jy67yssmq1hcthhjkn4.png)
Potential at point B,
![V_B=4* 10^3\ V](https://img.qammunity.org/2021/formulas/physics/college/2w0wln7iq8p20o5mbtstec6osikrtgpbbu.png)
We need to find the speed at point B on the circle. It is based on the concept of conservation of energy such that :
increase in kinetic energy = increase in potential×charge
![(1)/(2)m(v_A^2-v_B^2)=(V_B-V_A)q\\\\(1)/(2)m(v_A^2-v_B^2)={(4* 10^3-1.5* 10^3)}* 2* 1.6* 10^(-19)=8* 10^(-16)\\\\v_A^2-v_B^2=(2* 8* 10^(-16))/(6.63* 10^(-27))\\\\v_A^2-v_B^2=2.41* 10^(11)\\\\v_B^2=(6.2* 10^5)^2-2.41* 10^(11)\\\\v_B=3.78* 10^5\ m/s](https://img.qammunity.org/2021/formulas/physics/college/6m5b542fknaha7boorjsxfgpbl9ujsejg7.png)
So, the speed at point B is
.