Answer:
![\mathbf{A(t) = 180 - 130e ^{-(t)/(30)}}](https://img.qammunity.org/2021/formulas/mathematics/college/6sxhzd7bpvosjfynytjc047x77flnz4hc7.png)
Explanation:
Given that:
A tank contains 180 liters of fluid in which 50 grams dissolved inside.
Brine containing 1 gram of salt per liter is then pumped into the tank at a rate of 6 L/min
The salt pumped out
of initial amount added salt
At (t = 0) = 50
To determine the number A (t)
![(dA)/(dt)=Rate_(in) - Rate _(out)](https://img.qammunity.org/2021/formulas/mathematics/college/sh4jopr9ftabla52chzzq5n95yfnqumij3.png)
![A' = 6 - (1)/(30)A](https://img.qammunity.org/2021/formulas/mathematics/college/bd7mb10yjfh6scas969oheufou6n23ttcz.png)
![A' + (1)/(30)A = 6](https://img.qammunity.org/2021/formulas/mathematics/college/mg8lw863tol149kb8brzzorzus9yc8516q.png)
Integrating factor
![y = e^{\int\limits pdt](https://img.qammunity.org/2021/formulas/mathematics/college/kmlsgq8riqf3i7mp75jdfh11f4aocs2q48.png)
![y = e^{\int\limits (1)/(30)dt}](https://img.qammunity.org/2021/formulas/mathematics/college/hb17xji8dhebl8vhbnl2iasi5phipfx3nv.png)
![y = e^{(t)/(30)}](https://img.qammunity.org/2021/formulas/mathematics/college/nhtblacmd3dvjc43jnquldqms9pfqkz2j4.png)
![(e^{ (t)/(30)}A)' =4 e ^{(t)/(30)}+c](https://img.qammunity.org/2021/formulas/mathematics/college/gmru8j0nbgckinqmu16sfr8uq5rkctzsz7.png)
Taking integral on the both sides;
![Ae ^{(t)/(30)}= 6 * 30 e^{(t)/(30)} + c](https://img.qammunity.org/2021/formulas/mathematics/college/zu8dp4xg2l2uwpjdn2wejzmlpifmon9yed.png)
![A = 180+ ce^ {-(t)/(30)}](https://img.qammunity.org/2021/formulas/mathematics/college/x259v1tf4m5u9pgi8sb9dmshudi3n2yigk.png)
At A(t = 0) = 50
50 = 180 + C (assuming C =
)
C = 50 - 180
C = 130
![\mathbf{A(t) = 180 - 130e ^{-(t)/(30)}}](https://img.qammunity.org/2021/formulas/mathematics/college/6sxhzd7bpvosjfynytjc047x77flnz4hc7.png)