Answer:
![P(X\geq 2)=1- P(X<2)= 1-[P(X=0) +P(X=1)]](https://img.qammunity.org/2021/formulas/mathematics/college/dya2u9slo39oxjkocqhm3ardf9wcm939k4.png)
And using the probability mass function we can find the individual probabilities:
![P(X=0)=(8C0)(0.18)^0 (1-0.18)^(8-0)=0.2044](https://img.qammunity.org/2021/formulas/mathematics/college/mkjjxw32aigq98phaenisp188f6e5e4j9u.png)
![P(X=1)=(8C1)(0.18)^1 (1-0.18)^(0-1)=0.3590](https://img.qammunity.org/2021/formulas/mathematics/college/r6yr3engi4cc3cgij349t7tnue28ll1ibk.png)
And replacing we got:
![P(X\geq 2)=1 -[0.2044 +0.3590]= 0.4366](https://img.qammunity.org/2021/formulas/mathematics/college/q24exehqr9jt30q2frhb097ofl7jp41yj5.png)
Then the probability that at least 2 disapprove of daily pot smoking is 0.4366
Explanation:
Let X the random variable of interest "number of seniors who disapprove of daily smoking ", on this case we now that:
![X \sim Binom(n=8, p=0.18)](https://img.qammunity.org/2021/formulas/mathematics/college/krzfizb3nfzvg86rlc8qbwxmbltwu86zqm.png)
The probability mass function for the Binomial distribution is given as:
![P(X)=(nCx)(p)^x (1-p)^(n-x)](https://img.qammunity.org/2021/formulas/mathematics/high-school/8iqwxcad5prtfmkm1tr4xi9wqkdafcojn8.png)
Where (nCx) means combinatory and it's given by this formula:
![nCx=(n!)/((n-x)! x!)](https://img.qammunity.org/2021/formulas/mathematics/high-school/pgruiwadia04jigjxeetyoyp16exc8pdjh.png)
And we want to find this probability:
![P(X\geq 2)=1- P(X<2)= 1-[P(X=0) +P(X=1)]](https://img.qammunity.org/2021/formulas/mathematics/college/dya2u9slo39oxjkocqhm3ardf9wcm939k4.png)
And using the probability mass function we can find the individual probabilities:
![P(X=0)=(8C0)(0.18)^0 (1-0.18)^(8-0)=0.2044](https://img.qammunity.org/2021/formulas/mathematics/college/mkjjxw32aigq98phaenisp188f6e5e4j9u.png)
![P(X=1)=(8C1)(0.18)^1 (1-0.18)^(0-1)=0.3590](https://img.qammunity.org/2021/formulas/mathematics/college/r6yr3engi4cc3cgij349t7tnue28ll1ibk.png)
And replacing we got:
![P(X\geq 2)=1 -[0.2044 +0.3590]= 0.4366](https://img.qammunity.org/2021/formulas/mathematics/college/q24exehqr9jt30q2frhb097ofl7jp41yj5.png)
Then the probability that at least 2 disapprove of daily pot smoking is 0.4366