Answer:
The correct answer to the following question will be "1.23 mm".
Step-by-step explanation:
The given values are:
Average normal stress,

Elastic module,

Length,

To find the deformation, firstly we have to find the equation:
⇒

⇒

On taking "
" as common, we get
⇒
![=((PL)/(Ebt))/([(1)/(4)+(3)/(4)+(1)/(4)])](https://img.qammunity.org/2021/formulas/engineering/college/yeq5g358ujrbi7b36ocityi9oosm1vtxqw.png)
⇒

Now,
The stress at the middle will be:
⇒

⇒

⇒

⇒

Hence,
⇒

On putting the estimated values, we get
⇒

⇒

⇒