Answer:
a) |z+w|² cannot be uniquely determined from the information provided.
b) |zw|² = [|z| × |w|]² = (4×2)² = 64.
c) |z+w|² cannot be uniquely determined from the information provided.
d) |z/w|² = [|z|/|w|]² = (4/2)² = 4
Explanation:
z & w are complex numbers with magnitudes
|z| = 4
|w| = 2
We are the told to find
|z + w|²
|zw|²
|z - w|²
|z/w|²
Let the complex numbers be
z = x + iy
w = a + ib
|z| = √(x² + y²) = 4
|w| = √(a² + b²) = 2
|z|² = x² + y² = 16
|w|² = a² + b² = 4
z+w = (x + iy) + (a + ib) = (x + a) + i(y + b)
|z+w|² = (x + a)² + (y + b)² = x² + 2ax + a² + y² + 2by + b²
= (a² + b²) + (x² + y²) + 2ax + 2by
= |w|² + |z|² + 2ax + 2by
= 4 + 16 + 2ax + 2by
= 20 + 2(ax + by)
This cannot be determined from the information provided.
zw = (x + iy)(a + ib) = ax + i(bx + ay) - by
= (ax - by) + i(bx + ay)
|zw|² = a²x² + b²y² - 2abxy + b²x² + a²y² + 2abxy
= a²x² + b²y² + b²x² + a²y²
= a²(x² + y²) + b²(x² + y²)
= (a² + b²)(x² + y²)
= |w|² × |z|²
= 4×16
= 64
c) z-w = (x + iy) - (a + ib) = (x - a) + i(y - b)
|z-w|² = (x - a)² + (y - b)²
= x² - 2ax + a² + y² - 2by + b²
= (a² + b²) + (x² + y²) - 2ax - 2by
= |w|² + |z|² - 2ax - 2by
= 4 + 16 - 2ax - 2by
= 20 + 2(ax + by)
This cannot be determined from the information provided.
d) z/w = (x + iy)/(a + ib)
Rationalizing by multiplying numerator and denominator by (a - ib)
(z/w)= [(x + iy)(a - ib)/(a + ib)/(a - ib)]
= [ax - by + i(ay - bx)]/(a² + b²)
|z/w|² = [(ax + by)² + (ay - bx)²]/(a² + b²)²
= [a²x² + b²y² + 2abxy + b²x² + a²y² - 2abxy]/(a⁴ + b⁴ + 2a²b²)
= [a²x² + b²y² + b²x² + a²y²]/[(a² + b²)² - 2a²b² + 2a²b²]
= [(a² + b²)(x² + y²)]/[(a² + b²)²]
= [(x² + y²)/(a² + b²)]
= |z|²/|w|²
= (4/2)²
= 4
Hope this Helps!!!