34.4k views
4 votes
Find f(2) and f(a + h) when f(x) = 3x^2 + 2x + 4

User Pavel
by
4.8k points

2 Answers

4 votes

Answer:


f(2)=20\\f(a+h)=3a^2+6ah+3h^2+2a+2h+4

Explanation:


f(x)=3x^2 + 2x + 4


f(2)=3(2)^2 + 2(2) + 4\\f(2)=3(4)+ 2(2) + 4\\f(2)=12+ 4+ 4\\f(2)=20


f(a+h)=3(a+h)^2 + 2(a+h) + 4\\f(a+h)=3(a+h)(a+h) + 2(a+h) + 4\\f(a+h)=3a^2+3ah+3ah+3h^2+2a+2h+4\\f(a+h)=3a^2+6ah+3h^2+2a+2h+4

User Gary Wild
by
4.0k points
6 votes

Answer:

f(2) = 20

f(a+h) = 3a²+6ah+3h²+2a+2h+4

Explanation:

f(x) =
3x^2+2x+4

A) Putting x =2

=> f(2) = 3(2)²+2(2)+4

=> f(2) = 12+4+4

=> f(2) = 20

B) Putting x = a+h

=> f(a+h) = 3(a+h)²+2(a+h)+4

=> f(a+h) = 3a²+6ah+3h²+2a+2h+4

User Joel Harkes
by
4.9k points