Answer:
The 99% confidence interval for the mean consumption of meat among people over age 27 is between 1.4 pounds and 1.6 pounds.
Explanation:
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:
![\alpha = (1-0.99)/(2) = 0.005](https://img.qammunity.org/2021/formulas/mathematics/college/9a3mw1y7vfi8huayrviztpxqb0uratmawk.png)
Now, we have to find z in the Ztable as such z has a pvalue of
.
So it is z with a pvalue of
, so
![z = 2.575](https://img.qammunity.org/2021/formulas/mathematics/college/ns21tb6wdj5s4c4ujtbdbk1seck4ykucls.png)
Now, find the margin of error M as such
![M = z*(\sigma)/(√(n))](https://img.qammunity.org/2021/formulas/mathematics/college/cvh8tdoppqkhyobio78yaazk1nqj1870w9.png)
In which
is the standard deviation of the population and n is the size of the sample.
![M = 2.575*(1.2)/(√(1179)) = 0.1](https://img.qammunity.org/2021/formulas/mathematics/college/1fd34bj5sfd07ti4n2mo2xmbhcbner16xv.png)
The lower end of the interval is the sample mean subtracted by M. So it is 1.5 - 0.1 = 1.4 pounds
The upper end of the interval is the sample mean added to M. So it is 1.5 + 0.1 = 1.6 pounds
The 99% confidence interval for the mean consumption of meat among people over age 27 is between 1.4 pounds and 1.6 pounds.