Answer:
49.95+/-0.5543
= ( 49.3957, 50.5043) pounds
the 95% confidence interval (a,b) = ( 49.3957, 50.5043) pounds
And to 2 decimal points;
the 95% confidence interval (a,b) = ( 49.40, 50.50) pounds
Explanation:
Confidence interval can be defined as a range of values so defined that there is a specified probability that the value of a parameter lies within it.
The confidence interval of a statistical data can be written as.
x+/-zr/√n
Given that;
Mean x = 49.95 pounds
Standard deviation r = 1.9999 pounds
Number of samples n = 50
Confidence interval = 95%
z value(at 95% confidence) = 1.96
Substituting the values we have;
49.95+/-1.96(1.9999/√50)
49.95+/-1.96(0.282828570338)
49.95+/-0.554343997864
49.95+/-0.5543
= ( 49.3957, 50.5043) pounds
Therefore, the 95% confidence interval (a,b) = ( 49.3957, 50.5043) pounds