Answer:
![T_1 = 10*3.5 = 35](https://img.qammunity.org/2021/formulas/mathematics/college/n0de1fle4gouefpxttzddyv03pxhz2dfp1.png)
![T_2 = 20*2.9 = 58](https://img.qammunity.org/2021/formulas/mathematics/college/7kdmfz7mboeclaon7vfxfjoyg1ncq1vn2b.png)
![T_3 = 25*3.2 = 80](https://img.qammunity.org/2021/formulas/mathematics/college/h1s49nscg89wk9ph9gya7ra09ygj6jew70.png)
![T_4 = 15*3.4 = 51](https://img.qammunity.org/2021/formulas/mathematics/college/jole8mfl06htji1u5almnunyq5z984jxpz.png)
![\bar X= (T_1 +T_2 +T_3 +T_4)/(10+20+25+15)= (35+58+80+51)/(10+20+25+15) = 3.2](https://img.qammunity.org/2021/formulas/mathematics/college/gggguluduvzt6hotwrmhjv9t0mnfsoan48.png)
Explanation:
For this case we have the following info given:
for freshmen
for sophomores
for juniors
for seniors
For this case we can use the formula for the sample mean in order to find the total of each group:
![\bar X =(\sum_(i=1)^n X_i)/(n)](https://img.qammunity.org/2021/formulas/mathematics/high-school/or3cpf0vnm4lb12g82k8yobdo3trlbbjhj.png)
![T= \sum_(i=1)^n X_i = n *\bar X](https://img.qammunity.org/2021/formulas/mathematics/college/s4h2zfwvjy4uuom6slb0fjcsbhxsi0buti.png)
And replacing we got:
![T_1 = 10*3.5 = 35](https://img.qammunity.org/2021/formulas/mathematics/college/n0de1fle4gouefpxttzddyv03pxhz2dfp1.png)
![T_2 = 20*2.9 = 58](https://img.qammunity.org/2021/formulas/mathematics/college/7kdmfz7mboeclaon7vfxfjoyg1ncq1vn2b.png)
![T_3 = 25*3.2 = 80](https://img.qammunity.org/2021/formulas/mathematics/college/h1s49nscg89wk9ph9gya7ra09ygj6jew70.png)
![T_4 = 15*3.4 = 51](https://img.qammunity.org/2021/formulas/mathematics/college/jole8mfl06htji1u5almnunyq5z984jxpz.png)
And the grand mean would be given by:
![\bar X= (T_1 +T_2 +T_3 +T_4)/(10+20+25+15)= (35+58+80+51)/(10+20+25+15) = 3.2](https://img.qammunity.org/2021/formulas/mathematics/college/gggguluduvzt6hotwrmhjv9t0mnfsoan48.png)