Answer:
Initial Value Problem:
![(d^2 x)/(dt^2) = -32, x(0) = 200, (dx)/(dt)(0) = 40](https://img.qammunity.org/2021/formulas/mathematics/college/x3kpmo4n3nfs92xq2nmk28q4v0md6tjf0k.png)
![x(t) = -16t^2 + 40t +200](https://img.qammunity.org/2021/formulas/mathematics/college/8ooakcxbct6iyzhhzuhufv1te1hkb02w70.png)
Explanation:
The ball is thrown vertically downward, this means that acceleration due to gravity,
![g = (dx^(2) )/(dt^(2) ) = - 32 ft/s^2](https://img.qammunity.org/2021/formulas/mathematics/college/t9bf79h7u1jqa85aogin8j4jyl8821s69b.png)
The height of the ball at time, t = 0 at the top of the building will be:
![x(0) = 200 ft](https://img.qammunity.org/2021/formulas/mathematics/college/cu2hhxuzgfz0ulbl0n7qimfyys2eniqeoo.png)
The velocity at which the ball is thrown from the top of the building,
![(dx)/(dt) (0)= 40 ft/s](https://img.qammunity.org/2021/formulas/mathematics/college/54qxtlw3yl6qt3z9ym7uugt2lxqornd2iz.png)
Therefore the initial value problem is written below:
![(d^2 x)/(dt^2) = -32, x(0) = 200, (dx)/(dt)(0) = 40](https://img.qammunity.org/2021/formulas/mathematics/college/x3kpmo4n3nfs92xq2nmk28q4v0md6tjf0k.png)
Let us solve for x(t)
![(d^2 x)/(dt^2) = -32\\d((dx)/(dt) )= -32 dt\\](https://img.qammunity.org/2021/formulas/mathematics/college/x1t3v4x845jx077s9f9lcegwf86028hb6n.png)
Integrate both sides
![(dx)/(dt) = -32t + k_1\\(dx)/(dt) (0) = 40\\40 = -32(0) + k_1\\k_1 = 0\\(dx)/(dt) = -32t + 40](https://img.qammunity.org/2021/formulas/mathematics/college/cd3ds7ta23v2dpvzvv8f9e7ser892ecnhf.png)
Integrate both sides
![x(t) = -16t^2 + 40t + k_2\\x(0) = 200\\200 = -16(0) + 40(0) + k_2\\k_2 = 200\\x(t) = -16t^2 + 40t +200](https://img.qammunity.org/2021/formulas/mathematics/college/481acxuyh4m4rrptyrhon4d4lxbexoz5vq.png)