Answer:
a) 4160 V
b) 12 kW and 81 kVAR
c) 54 kW and 477 kVAR
Step-by-step explanation:
1) The phase voltage is given as:
![V_p=(3810.5)/(√(3) )=2200 V](https://img.qammunity.org/2021/formulas/engineering/college/wngsjws14hrdtpo9glzet29kk7gjb6uddh.png)
The complex power S is given as:
![S=560.1(0.707 +j0.707)+132=660\angle 36.87^o \ KVA](https://img.qammunity.org/2021/formulas/engineering/college/nouyf4w4ci6a1ixq86ko33x07fw69lt60y.png)
![where\ S^*\ is \ the \ conjugate\ of \ S\\Therefore\ S^*=660\angle -36.87^oKVA](https://img.qammunity.org/2021/formulas/engineering/college/rmqfz3v6jg8o0xtx1bauv6vbaem1s9puoz.png)
The line current I is given as:
![I=(S^*)/(3V)=(660000\angle -36.87)/(3(2200)) =100\angle -36.87^o\ A](https://img.qammunity.org/2021/formulas/engineering/college/gtptnpn9rddswqtc4xwx6071s95p4s48sz.png)
The phase voltage at the sending end is:
![V_s=2200\angle 0+100\angle -36.87(0.4+j2.7)=2401.7\angle 4.58^oV](https://img.qammunity.org/2021/formulas/engineering/college/3i6dm08th43uq8606gt1omcgwt7egian18.png)
The magnitude of the line voltage at the source end of the line (
![V_(sL)=√(3) |V_s|=√(3) *2401.7=4160V](https://img.qammunity.org/2021/formulas/engineering/college/zz4otm13prfgetmgs2hhw0g8dg99xg1sw5.png)
b) The Total real and reactive power loss in the line is:
![S_l=3|I|^2(R+jX)=3|100|^2(0.4+j2.7)=12000+j81000](https://img.qammunity.org/2021/formulas/engineering/college/abwur9r6pnaf3g4hretperp2yq2yiyp1vi.png)
The real power loss is 12000 W = 12 kW
The reactive power loss is 81000 kVAR = 81 kVAR
c) The sending power is:
![S_s=3V_sI^*=3(2401.7\angle 4.58)(100\angle 36.87)=54000+j477000](https://img.qammunity.org/2021/formulas/engineering/college/j2nftwbhlwxty90rg0lstc6idrl9hn47s5.png)
The Real power delivered by the supply = 54000 W = 54 kW
The Reactive power delivered by the supply = 477000 VAR = 477 kVAR