Complete Question:
Grain diameter 1 (mm) = 4.4E-02
Yield stress 1 (MPa) = 131
Grain diameter 2 (mm) = 7.7E-03
Yield Stress 2 (MPa) = 268
The yield strength for an alloy that has an average grain diameter, d1, is listed above as Yield Stress 1 . At a grain diameter of d2, the yield strength increases Yield Stress 2. At what grain diameter, in mm, will the yield strength be 217 MPa
Answer:
d = 1.3 * 10⁻² m
Step-by-step explanation:
According to the Hall Petch equation:
![\sigma_y = \sigma_0 + k/√(d) \\](https://img.qammunity.org/2021/formulas/engineering/college/cdsi7afpr6ev5zw2idhkr5hchyebsu7gb3.png)
At
,
![\sigma_(y1) = 131 MPa = 131 N/ mm^2](https://img.qammunity.org/2021/formulas/engineering/college/d4atqmebtv05vi84n7yjzgl5baerpy5cyg.png)
![131 = \sigma_0 + k/\sqrt{4.4 * 10^(-2)} \\k = 27.45 - 0.2096 \sigma_0](https://img.qammunity.org/2021/formulas/engineering/college/p7r1q5m71n4ijd6722rcdpf4dt8ah7c896.png)
At
,
![\sigma_(y2) = 131 MPa = 268 N/ mm^2](https://img.qammunity.org/2021/formulas/engineering/college/mcz06msnyeamvuczllz8rm3js6ly881xhy.png)
![268 = \sigma_0 + (27.45 - 0.2096 \sigma_0)/\sqrt{7.7 * 10^(-3)} \\23.5036 = 27.47 - 0.1219 \sigma_0\\ \sigma_0 = 32.45 N/mm^2](https://img.qammunity.org/2021/formulas/engineering/college/9e3ejxp09berw5vn2by1cseh547ouc7i3q.png)
k = 27.45 - 0.2096(32.45)
k = 20.64
At
, reapplying Hall Petch law:
![\sigma_y = \sigma_0 + k/√(d) \\](https://img.qammunity.org/2021/formulas/engineering/college/cdsi7afpr6ev5zw2idhkr5hchyebsu7gb3.png)
![217 =32.45 + 20.64/√(d) \\217 - 32.45 = 20.64/√(d)\\184.55 = 20.64/ √(d) \\√(d) = 20.64/184.55\\√(d) = 0.11184\\d = 0.013 mm](https://img.qammunity.org/2021/formulas/engineering/college/y1wyh2higl3q007a2616ye816zzdp2ih8l.png)
d = 1.3 * 10⁻² m