186k views
0 votes
Consider the set of sequences of seven letters chosen from W and L. We may think of these sequences as representing the outcomes of a match of seven games, where W means the first team wins the game and L means the second team wins the game. The match is won by the first team to win four games (thus, some games may never get played, but we need to include their hypothetical outcomes in the points in order that we have a probability space of equally likely points).A. What is the probability that a team will win the match, given that it has won the first game?B. What is the probability that a team will win the match, given that it has won the first two games? C. What is the probability that a team will win the match, given that it has won two out of the first three games?

User Sleighty
by
4.1k points

1 Answer

4 votes

Answer:

a) Probability that a team will win the match given that it has won the first game = 0.66

b) Probability that a team will win the match given that it has won the first two games= 0.81

c) Probability that a team will win the match, given that it has won two out of the first three games = 0.69

Explanation:

There are a total of seven games to be played. Therefore, W and L consists of 2⁷ equi-probable sample points

a) Since one game has already been won by the team, there are 2⁶ = 64 sample points left. If the team wins three or more matches, it has won.

Number of ways of winning the three or more matches left =
6C3 + 6C4 + 6C5 + 6C6

= 20 + 15 + 6 + 1 = 42

P( a team will win the match given that it has won the first game) = 42/64 = 0.66

b) Since two games have already been won by the team, there are 2⁵ = 32 sample points left. If the team wins two or more matches, it has won.

Number of ways of winning the three or more matches left =
5C2 + 5C3 + 5C4 + 5C5 = 10 + 10 + 5 +1 = 26

P( a team will win the match given that it has won the first two games) = 26/32 = 0.81

c) Probability that a team will win the match, given that it has won two out of the first three games

They have played 3 games out of 7, this means that there are 4 more games to play. The sample points remain 2⁴ = 16

They have won 2 games already, it means they have two or more games to win.

Number of ways of winning the three or more matches left =
4C2 + 4C3 + 4C4 = 6 + 4 + 1 = 11

Probability that a team will win the match, given that it has won two out of the first three games = 11/16

Probability that a team will win the match, given that it has won two out of the first three games = 0.69

User Stephan Bauer
by
4.9k points