Answer:
a) Probability that a team will win the match given that it has won the first game = 0.66
b) Probability that a team will win the match given that it has won the first two games= 0.81
c) Probability that a team will win the match, given that it has won two out of the first three games = 0.69
Explanation:
There are a total of seven games to be played. Therefore, W and L consists of 2⁷ equi-probable sample points
a) Since one game has already been won by the team, there are 2⁶ = 64 sample points left. If the team wins three or more matches, it has won.
Number of ways of winning the three or more matches left =
= 20 + 15 + 6 + 1 = 42
P( a team will win the match given that it has won the first game) = 42/64 = 0.66
b) Since two games have already been won by the team, there are 2⁵ = 32 sample points left. If the team wins two or more matches, it has won.
Number of ways of winning the three or more matches left =
= 10 + 10 + 5 +1 = 26
P( a team will win the match given that it has won the first two games) = 26/32 = 0.81
c) Probability that a team will win the match, given that it has won two out of the first three games
They have played 3 games out of 7, this means that there are 4 more games to play. The sample points remain 2⁴ = 16
They have won 2 games already, it means they have two or more games to win.
Number of ways of winning the three or more matches left =
= 6 + 4 + 1 = 11
Probability that a team will win the match, given that it has won two out of the first three games = 11/16
Probability that a team will win the match, given that it has won two out of the first three games = 0.69