Answer:
c) T(−1, 3) ° Rotation,180°
Step-by-step explanation:
Step-by-step explanation:-
First we will apply transformation is
Rotation of 180° then we will apply transformation is changes
(x,y) to (-x ,-y)
a)
Given vertex T( 2 ,2 )
T( 2 ,2 )→ T( -2 ,-2)
Next we will apply rule
Horizontal translation left '1' units and Vertical translation up 'd' units
T( -2 ,-2) → T¹ ( -2 -1 ,-2 +3)
The new vertex is T¹ ( -3 ,1)
b)
Given vertex U( 4 ,2 )
U( 4 ,2 )→ U( -4 ,-2)
Next we will apply rule
Horizontal translation left '1' units and Vertical translation up 'd' units
U -4 ,-2) → U¹ ( -4 -1 ,-2 +3)
The new vertex is U¹ ( -5 ,1)
c)
Given vertex R( 3 ,5 )
R( 3 ,5 )→ R( -3,-5)
Next we will apply rule
Horizontal translation left '1' units and Vertical translation up 'd' units
R( -3 ,-5) → R¹ ( -3 -1 ,-5 +3)
The new vertex is R¹ ( -4 ,-2)
d)
Given vertex S( 1 ,3 )
S( 1 ,3 )→ S( -1 ,-3)
Next we will apply rule
Horizontal translation left '1' units and Vertical translation up 'd' units
S( -1,-3) → S¹ ( -1 -1 ,-3 +3)
The new vertex is S¹ ( -2,0)