Answer:
= ( $72.756, $110.804)
Therefore, the 90% confidence interval (a,b) = ( $72.756, $110.804)
Critical value at 90% confidence = 1.645
Explanation:
Confidence interval can be defined as a range of values so defined that there is a specified probability that the value of a parameter lies within it.
The confidence interval of a statistical data can be written as.
x+/-zr/√n
Given that;
Mean x = $91.78
Standard deviation r = $23.13
Number of samples n = 4
Confidence interval = 90%
Using the z table;
z(α=0.05) = 1.645
Critical value at 90% confidence = 1.645
Substituting the values we have;
$91.78+/-1.645($23.13/√4)
$91.78+/-1.645($11.565)
$91.78+/-$19.024425
$91.78+/-$19.024
= ( $72.756, $110.804)
Therefore, the 90% confidence interval (a,b) = ( $72.756, $110.804)