Answer:
The calculated value Z = 1.2903 < 1.96 at 0.05 level of significance
Null hypothesis is accepted at 0.05 level of significance
The population proportion is equal to 0.5
Explanation:
Step (i):-
Given random sample size ' n' = 250
Sample proportion 'p'
![p= (x)/(n) = (135)/(250) = 0.54](https://img.qammunity.org/2021/formulas/mathematics/college/nxqp3f5vz12qwtsvevjc76ttbfmaiw7vd6.png)
Given Population proportion P = 0.5
Q = 1-P = 1-0.5 =0.5
Null Hypothesis : H₀ : P = 0.5
Alternative Hypothesis : H₁ : P≥ 0.5
Step(ii):-
Test statistic
![Z = \frac{p - P}{\sqrt{(PQ)/(n) } }](https://img.qammunity.org/2021/formulas/mathematics/college/tsunfhhlo915l4hjnzx3nnd20iewpv266s.png)
![Z = \frac{0.54-0.5}{\sqrt{(0.5 X 0.5)/(250) } }](https://img.qammunity.org/2021/formulas/mathematics/college/a8gemo56gxjpahjd5n2twvi2xb6ztl69f4.png)
Z = 1.2903
Level of significance α = 0.05
Z₀.₀₅ = 1.96
The calculated value Z = 1.2903 < 1.96 at 0.05 level of significance
Null hypothesis is accepted at 0.05 level of significance
Step(iii):-
P- value
The probability of test statistic
P(Z > 1.2903) = 0.5 - A ( 1.2903)
= 0.5 - 0.4015
= 0.0985≅ 0.10
i) P- value =0.10 > α = 0.05
null hypothesis is accepted
Conclusion:-
The population proportion is equal to 0.5