108k views
3 votes
Solid spherical particles having a diameter of 0.090 mm and a density of 2002 kg/m3 are settling in a solution of water at 26.7C. The volume fraction of the solids in the water is 0.45. Calculate the settling velocity and the Reynolds number.

1 Answer

3 votes

Answer:

Settling Velocity (Up)= 2.048*10^-5 m/s

Reynolds number Re = 2.159*10^-3

Step-by-step explanation:

We proceed as follows;

Diameter of Particle = 0.09 mm = 0.09*10^-3 m

Solid Particle Density = 2002 kg/m3

Solid Fraction, θ= 0.45

Temperature = 26.7°C

Viscosity of water = 0.8509*10^-3 kg/ms

Density of water at 26.7 °C = 996.67 kg/m3

The velocity between the interface, i.e between the suspension and clear water is given by,

U = [ ((nf/ρf)/d)D^3] [18+(1/3)D^3)(1/2)]

D = d[(ρp/ρf)-1)g*(ρf/nf)^2]^(1/3)

D = 2.147

U = 0.0003m/s (n = 4.49)

Up = 0.0003 * (1-0.45)^4.49 = 2.048*10^-5 m/s

Re=0.09*10^-3*2.048*10^-5*996.67/0.0008509 = 2.159*10^-3

User Ogzd
by
4.5k points