Answer:
(a)10 Outcomes
(b)
![(2)/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/98uadsvdy7njib52j29uhdw34bkyzrhkgh.png)
Explanation:
An urn contains two blue balls (denoted
) and three white balls (denoted
).
In the selection, a ball is picked and replaced.
The possible outcomes of the experiment are:
![B_1B_1,B_1B_2,B_1W_1,B_1W_2,B_1W_3\\B_2B_1,B_2B_2,B_2W_1,B_2W_2,B_2W_3\\W_1B_1,W_1B_2,W_1W_1,W_1W_2,W_1W_3\\W_2B_1,W_2B_2,W_2W_1,W_2W_2,W_2W_3\\W_3B_1,W_3B_2,W_3W_1,W_3W_2,W_3W_3](https://img.qammunity.org/2021/formulas/mathematics/college/ui53jsmosq5fh3hjod13oi3a69zdriytpv.png)
(a)If the first ball drawn is blue. the outcomes are:
![B_1B_1,B_1B_2,B_1W_1,B_1W_2,B_1W_3\\B_2B_1,B_2B_2,B_2W_1,B_2W_2,B_2W_3](https://img.qammunity.org/2021/formulas/mathematics/college/jubwk5oz2dpvhs947dabkg20b6lvsfwvg7.png)
There are 10 outcomes if the first ball drawn is blue.
Probability that the first ball drawn is blue
![=(10)/(25)\\ =(2)/(5)](https://img.qammunity.org/2021/formulas/mathematics/college/6f291c6hn0mcc089vooxbz83t07n13rwcm.png)