Answer:
The tangent vector for
is:
![\vec T (t) = \left \langle (8)/(10), 0, (6)/(10) \right\rangle](https://img.qammunity.org/2021/formulas/mathematics/college/etl2bazwlb888m75tmstd8xst6e2l15k6s.png)
Explanation:
The function to be used is
![\vec r(t) = \langle 8\cdot t, 10, 3\cdot \sin (2\cdot t)\rangle](https://img.qammunity.org/2021/formulas/mathematics/college/dq8bnd1alggp1wqpsvi2qetcui376ufl5q.png)
The unit tangent vector is the gradient of
divided by its norm, that is:
![\vec T (t) = (\vec \\abla r (t))/(\|\vec \\abla r (t)\|)](https://img.qammunity.org/2021/formulas/mathematics/college/lmih7cl1vs2orgt6kt4c07h7osual2wich.png)
Where
is the gradient operator, whose definition is:
![\vec \\abla f (x_(1), x_(2),...,x_(n)) = \left\langle (\partial f)/(\partial x_(1)), (\partial f)/(\partial x_(2)),...,(\partial f)/(\partial x_(n)) \right\rangle](https://img.qammunity.org/2021/formulas/mathematics/college/b6oa0wvkp58oqkuuvvwdl5gz5d54aic3sp.png)
The components of the gradient function of
are, respectively:
,
and
![(\partial r)/(\partial x_(3)) = 6 \cdot \cos (2\cdot t)](https://img.qammunity.org/2021/formulas/mathematics/college/xjdh4p3y7p8boaplve7iuwwdqlxnggb81u.png)
For
:
,
and
![(\partial r)/(\partial x_(3)) = 6](https://img.qammunity.org/2021/formulas/mathematics/college/ahajzflk6g7ffq15xrmjlrvir7p9xm4fqu.png)
The norm of the gradient function of
is:
![\| \vec \\abla r(t) \| = \sqrt{8^(2)+0^(2)+ [6\cdot \cos (2\cdot t)]^(2)}](https://img.qammunity.org/2021/formulas/mathematics/college/vwx5zuhcc02lynps3agcczwq7xykikrscm.png)
![\| \vec \\abla r(t) \| = \sqrt{64 + 36\cdot \cos^(2) (2\cdot t)}](https://img.qammunity.org/2021/formulas/mathematics/college/wdz8c44g09qtmlflw4erar00tnonfi6lj2.png)
For
:
![\| \vec r(t) \| = 10](https://img.qammunity.org/2021/formulas/mathematics/college/u5vcmzk1g40r66596ep8fmex2bh1z224rm.png)
The tangent vector for
is:
![\vec T (t) = \left \langle (8)/(10), 0, (6)/(10) \right\rangle](https://img.qammunity.org/2021/formulas/mathematics/college/etl2bazwlb888m75tmstd8xst6e2l15k6s.png)