Answer:
The required sample size 'n' = 97 .41 hours
Explanation:
Explanation:-
Given standard deviation of the Population 'σ' = 3 hours
Given the Margin of error =
![(1)/(2) hour](https://img.qammunity.org/2021/formulas/mathematics/college/bs79ciqk02yalx8jz4ibw4hrgyvzzbix72.png)
The Margin of error is determined by
![M.E = \frac{Z_{(\alpha )/(2) S.D} }{√(n) }](https://img.qammunity.org/2021/formulas/mathematics/college/hnyg1mhqt55er78zomsm0lq8z0k9eofi9x.png)
Given level of significance ∝ = 0.10 or 0.90
Z₀.₁₀ = 1.645
![(1)/(2) =(1.645 X 3)/(√(n) )](https://img.qammunity.org/2021/formulas/mathematics/college/hui5p5a682gpo3tqul1hnsq674eafrm18n.png)
Cross multiplication , we get
![√(n) = 2 X 1.645 X 3](https://img.qammunity.org/2021/formulas/mathematics/college/f9b8zyl10uzg1nbvroih1vibg106c76sx0.png)
√n = 9.87
Squaring on both sides, we get
n = 97.41 hours
Final answer:-
The required sample size 'n' = 97.41 hours