Answer:
[F cos θ - k(m2g - Fsin θ) + m1g]/(m1 + m2)
Step-by-step explanation:
Since F cos θ - k(m2g - Fsin θ) - m1(a + g) = m2a
Expanding the bracket containing a, we have
F cos θ - k(m2g - Fsin θ) - m1a + m1g = m2a
Collecting the terms in a to the right-hand-side of the equation, we have
F cos θ - k(m2g - Fsin θ) + m1g = m1a + m2a
Factorizing a out, we have
F cos θ - k(m2g - Fsin θ) + m1g = (m1 + m2)a
Dividing both sides by (m1 + m2), we have
[F cos θ - k(m2g - Fsin θ) + m1g]/(m1 + m2) = a
So, a = [F cos θ - k(m2g - Fsin θ) + m1g]/(m1 + m2)