Answer:
0.015 = 1.5% of BMW dealers are pricing the BMW 3 Series Coupe 335i at more than the average price ($44,520) for a Mercedes CLK350 Coupe
Explanation:
When the distribution is normal, we use the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:
![Z = (X - \mu)/(\sigma)](https://img.qammunity.org/2021/formulas/mathematics/college/c62rrp8olhnzeelpux1qvr89ehugd6fm1f.png)
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:
![\mu = 39368, \sigma = 2367](https://img.qammunity.org/2021/formulas/mathematics/college/601ifnia5131teeenlbgenq0n84qoc45we.png)
What percentage of BMW dealers are pricing the BMW 3 Series Coupe 335i at more than the average price ($44,520) for a Mercedes CLK350 Coupe?
This is 1 subtracted by the pvalue of Z when X = 44520. So
![Z = (X - \mu)/(\sigma)](https://img.qammunity.org/2021/formulas/mathematics/college/c62rrp8olhnzeelpux1qvr89ehugd6fm1f.png)
![Z = (44520 - 39368)/(2367)](https://img.qammunity.org/2021/formulas/mathematics/college/xduax087g2d6tefptfbb4glchx5nzjad12.png)
![Z = 2.18](https://img.qammunity.org/2021/formulas/mathematics/college/of9am0bu9qugxylbwe975oo24bkw2oxmo0.png)
has a pvalue of 0.985
1 - 0.985 = 0.015
0.015 = 1.5% of BMW dealers are pricing the BMW 3 Series Coupe 335i at more than the average price ($44,520) for a Mercedes CLK350 Coupe