Answer:
(a)
![D(t)=(50000)/(1.9t+9)](https://img.qammunity.org/2021/formulas/mathematics/college/hp7q35v9sruqpiu2hb9o7v1vni5zou233x.png)
(b)
![D'(115)=-1.8355](https://img.qammunity.org/2021/formulas/mathematics/college/ocrdzzc1adx8bjrdbrbqehycqqwna1ggjh.png)
Explanation:
The demand function for a product is given by :
![D(p)=(50000)/(p)](https://img.qammunity.org/2021/formulas/mathematics/college/pro2z1vxvta3mt6z0mmfnusk0ruihy111y.png)
Price, p is a function of time given by
, where t is in days.
(a)We want to find the demand as a function of time t.
![\text{If } D(p)=(50000)/(p),$ and p=1.9t+9\\Then:\\D(t)=(50000)/(1.9t+9)](https://img.qammunity.org/2021/formulas/mathematics/college/jdz20cqn4pcfobzqstxnqvdwzsdikan3bi.png)
(b)Rate of change of the quantity demanded when t=115 days.
![\text{If } D(t)=(50000)/(1.9t+9)](https://img.qammunity.org/2021/formulas/mathematics/college/82j5dkr34ek3c694tpmjct7j95qk7xq24r.png)
![\frac{\mathrm{d}}{\mathrm{d}t}\left[(50000)/((19t)/(10)+9)\right]}}=50000\cdot \frac{\mathrm{d}}{\mathrm{d}t}\left[(1)/((19t)/(10)+9)\right]}](https://img.qammunity.org/2021/formulas/mathematics/college/7n192od16m414org8ur0h7nc11p214dmah.png)
![=-50000\cdot(d)/(dt) (\left[(19t)/(10)+9\right])/(\left((19t)/(10)+9\right)^2)}}](https://img.qammunity.org/2021/formulas/mathematics/college/jm12jlzdw7n8422rfttgc184kkzffzajag.png)
![=(-50000(1.9(d)/(dt)t+(d)/(dt)9))/(\left((19t)/(10)+9\right)^2)}}](https://img.qammunity.org/2021/formulas/mathematics/college/vp3wmeaovwrh4jis962044yv09916yr237.png)
![=-(95000)/(\left((19t)/(10)+9\right)^2)\\$Simplify/rewrite to obtain:$\\\\D'(t)=-(9500000)/(\left(19t+90\right)^2)](https://img.qammunity.org/2021/formulas/mathematics/college/j2lmmoeiapspj113loe1xe30dva6xb91kj.png)
Therefore, when t=115 days
![D'(115)=-(9500000)/(\left(19(115)+90\right)^2)\\D'(115)=-1.8355](https://img.qammunity.org/2021/formulas/mathematics/college/cp3hnapg14b1ozw0unaufqxikr1v8rua03.png)