Answer:
a) v₀ₓ = v₀ cos θ , b) v_{oy} = v₀ sin θ , c) y = v_{oy}² / 2g, y = 24.25 m
e) R = 138.46 m
Step-by-step explanation:
This is a projectile launch exercise
a) let's use trigonometry to find the components of the initial velocity
cos θ = v₀ₓ / v₀
v₀ₓ = v₀ cos θ
v₀ₓ = 38 cos 35
v₀ₓ = 31.13 m / s
b) sin θ =
/ v₀
v_{oy} = v₀ sin θ
v_{oy} = 38 sint 35
v_{oy} = 21 80 m / s
c, d) to find the maximum height, the vertical speed is zero
v_{y}² = v_{oy}² - 2 g y
0 =
² - 2 gy
y = v_{oy}² / 2g
let's calculate
y = 21.80 2 / (2 9.8)
y = 24.25 m
e) They ask to find the horizontal distance
for this we can use the expression of reaches
R = v₀² sin 2θ / g
let's calculate
R = 38² sin (2 35) / 9.8
R = 138.46 m