19.1k views
2 votes
(a) Explain what is wrong with the following ‘proof’:Statement:IfRis symmetric and transitive, thenRis reflexive."Proof":SupposeRis symmetric and transitive. Symmetric means thatx R yimpliesy R x. We apply transitivity tox R yandy R xto givex R x. Therefore,Ris reflexive.(b) Give an example of a relation on a set that is both symmetric and tran-sitive, but not reflexive

1 Answer

4 votes

Answer:

Explanation:

Recall that, in this case, the subset of X for which R is defined is called the domain of R. The mistake occurs when we assume that the domain R is the whole set X, but it could happen that R is not defined for some elements of X.

Recall the following example:

X = {2,4,6}.

We can define R as follows {(2,2), (4,4), (2,4), (4,2)}. We can easily check that this is a transitive and symmetric relation, but since we don't have the element (6,6) it fails to be reflexive.

User Shrek Tan
by
8.8k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.