Answer:
ΔL = 1.011 mm
Step-by-step explanation:
Let's begin by listing out the given information:
Length (L) = 600 mm = 0.6 m,
Diameter (D) = 40 mm = 0.04 m ⇒ Radius (r) = 20 mm = 0.2 m,
Area (cross sectional) = πr² = 3.14 x .02² = 0.001256 m²,
Modulus of Elasticity (E) = 85 GN/m²,
Compressive load (F) = 180 KN
Using the formula, Stress = Load ÷ Area
Mathematically,
σ = F ÷ A = 180 x 10³ ÷ 0.001256
σ = 143312.1 KN/m²
Modulus of elasticity = stress ÷ strain
E = σ ÷ ε
ε = ΔL/L
85 x 10⁹ = 143312.1 x 10³ ÷ (ΔL/L)
ΔL = 143312.1 x 10³ ÷ 85 X 10⁹ = 1686.02 * 10⁻⁶
ΔL = L x 1686.02 * 10⁻⁶
ΔL = 0.6 * 1686.02 * 10⁻⁶ = 1011.61 x 10⁻⁶
ΔL = 1.011 x 10⁻³ m
ΔL = 1.011 mm
∴The bar contracts by 1.011 mm