160k views
5 votes
What is the factored form of 27a6+8g12?

2 Answers

7 votes

Answer:


\left(2g^4+3a^2\right)\left(4g^8-6g^4a^2+9a^4\right)

Explanation:


27a^6+8g^(12)


\mathrm{Rewrite\:}27a^6+8g^(12)\mathrm{\:as\:}\left(3a^2\right)^3+\left(2g^4\right)^3


\mathrm{Apply\:Sum\:of\:Cubes\:Formula:\:}x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)


\left(3a^2\right)^3+\left(2g^4\right)^3=\left(3a^2+2g^4\right)\left(3^2a^4-3\cdot \:2g^4a^2+2^2g^8\right)


=\left(2g^4+3a^2\right)\left(2^2g^8-3\cdot \:2g^4a^2+3^2a^4\right)


=\left(2g^4+3a^2\right)\left(4g^8-6g^4a^2+9a^4\right)

User Jama Mohamed
by
5.9k points
3 votes

Answer:

b

Explanation:

correct on edge 2021

the other one isnt even an option

User Armando
by
5.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.