Answer:
The slope of the line is 3 and the y-intercept is (3/2) three-halves.
Explanation:
The data provided is:
X Y
-1.0 -1.5
-0.5 0.0
0.0 1.5
0.5 3.0
The slope of the linear function is denoted by, b and the intercept is denoted by, a.
The formula to compute the slope and intercept are:
![a &= \frac{\sum{Y} \cdot \sum{X^2} - \sum{X} \cdot \sum{XY} }{n \cdot \sum{X^2} - \left(\sum{X}\right)^2} \\\\b &= \frac{ n \cdot \sum{XY} - \sum{X} \cdot \sum{Y}}{n \cdot \sum{X^2} - \left(\sum{X}\right)^2}](https://img.qammunity.org/2021/formulas/mathematics/high-school/jh0jo1eyr0x1wpct62scv4n9g3ieqcte9o.png)
Compute the values required in Excel.
Compute the slope and intercept as follows:
![a &= \frac{\sum{Y} \cdot \sum{X^2} - \sum{X} \cdot \sum{XY} }{n \cdot \sum{X^2} - \left(\sum{X}\right)^2} = ( 3 \cdot 1.5 - (-1) \cdot 3)/( 4 \cdot 1.5 - (-1)^2) \approx (3)/(2) \\ \\b &= \frac{ n \cdot \sum{XY} - \sum{X} \cdot \sum{Y}}{n \cdot \sum{X^2} - \left(\sum{X}\right)^2} = ( 4 \cdot 3 - (-1) \cdot 3 )/( 4 \cdot 1.5 - \left( -1 \right)^2) \approx 3\end{aligned}](https://img.qammunity.org/2021/formulas/mathematics/high-school/r9to7fzs75r2k7dejryn9kiru2lho2eidt.png)
Thus, the slope of the line is 3 and the y-intercept is (3/2) three-halves.