Answer:
![\theta = 216](https://img.qammunity.org/2021/formulas/mathematics/middle-school/p5uecc9pu566swb4sdtyc59k2u3bqsfbiz.png)
Explanation:
Given
Area of Sector : Area of Circle = 3 : 5
Required
Determine the central angle
The question implies that
![(Area_(sector))/(Area_(circle)) = (3)/(5)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ape9t5di3vlbeqzzggxseuhrsj3fdscdh8.png)
Multiply both sides by 5
![5 * (Area_(sector))/(Area_(circle)) = (3)/(5) * 5](https://img.qammunity.org/2021/formulas/mathematics/middle-school/zg4njuhact9wp0r16twvw1azwexeli5xxz.png)
![5 * (Area_(sector))/(Area_(circle)) = 3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ybsr8m3rift3yzosm12mk1vgfx6ge38hmb.png)
Multiply both sides by Area{circle}
![5 * (Area_(sector))/(Area_(circle)) * Area_(circle) = 3 * Area_(circle)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/o8yvkmmlu7nygxhnp1kqhdtrk6y590fqrk.png)
![5 * {Area_(sector) = 3 * Area_(circle)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/dti4nau8ytt5q8s19225uowfuvp9wrqj5x.png)
Substitute the areas of sector and circle with their respective formulas;
![Area_(sector) =(\theta)/(360) * \pi r^2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/dyeueogrcus39sdlotv4v1ldo1ulcarjh4.png)
![Area_(circle) = \pi r^2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/d4q356100o5xtsepzupk8vis7eedvoxlrg.png)
So, we have
![5 * (\theta)/(360) * \pi r^2 = 3 * \pi r^2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/nofp46xhifbu171b9j4zxg4dvov7qogtjo.png)
Divide both sides by
![\pi r^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/dlcbuo3stzuipxv6p7f7yl1stpzfah0aij.png)
![5 * (\theta)/(360) * ( \pi r^2)/(\pi r^2) = 3 * (\pi r^2)/(\pi r^2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/bq8ltdc363injetjuycrxnebb3zqg0n2o8.png)
![5 * (\theta)/(360) = 3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/gvco6fgy5uvqrger2pr4of8h5n6o9bup9a.png)
Multiply both sides by 360
![360 * 5 * (\theta)/(360) = 3 * 360](https://img.qammunity.org/2021/formulas/mathematics/middle-school/o7l26dvizgavl0zsdectkp9b20j5s9bebs.png)
![5 * \theta = 3 * 360](https://img.qammunity.org/2021/formulas/mathematics/middle-school/7w5e4lll4oqieb4eo5inq9corrpfspvsht.png)
Divide both sides by 5
![(5 * \theta)/(5) = (3 * 360)/(5)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/6atk1xb3j9nladwszcrczfkr0kvtzxuawd.png)
![\theta = (3 * 360)/(5)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/qh40lexscye16yqz47a11waj1aebooq7bs.png)
![\theta = (1080)/(5)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/a8zfa49pzajkdwcrarma2wupzfb1xcoknb.png)
![\theta = 216](https://img.qammunity.org/2021/formulas/mathematics/middle-school/p5uecc9pu566swb4sdtyc59k2u3bqsfbiz.png)
Hence, the central angle is 216 degrees