Answer:
54m²
Explanation:
METHOD 1:
You can use the Heron's formula:
![A=√(p(p-a)(p-b)(p-c))](https://img.qammunity.org/2021/formulas/mathematics/high-school/lsviqatyomdo8bqjfdfldbbydr6dw8205v.png)
where
p - half of perimeter
a, b, c - lengths of sides
We have
![a=12m;\ b=15m;\ c=9m](https://img.qammunity.org/2021/formulas/mathematics/high-school/t93yjq1juoyuwm2xg11joymiy78uarr0gw.png)
Calculate:
![p=(12+15+9)/(2)=(36)/(2)=18\ (m)\\\\A=√(18(18-12)+(18-15)(18-9))\\\\A=√((18)(6)(3)(9))\\\\A=√(2916)\\\\A=54\ (m^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ph8rpe78bgf4i1j39euingamgpr1nqzgsc.png)
METHOD 2:
Let's check that it is not a right triangle.
If the sum of the squares of the two shorter sides is equal to the square of the longest side, then this triangle is rectangular.
We have
![9m < 12m<15m](https://img.qammunity.org/2021/formulas/mathematics/high-school/he4g4egqvo4rli4358i1cehufmn0mwtzuv.png)
Check:
![9^2+12^2=81+144=225\\15^2=225](https://img.qammunity.org/2021/formulas/mathematics/high-school/joq1ds5hnio62oncg8st3vjn81ndori8mp.png)
This is a right trianglr wherew 9m and 12m are legs and 15m is a hypotenuse.
The formula of an area of a right triangle is:
![A=(ab)/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/7zw6658s5v7s81cbca9xrssqo4lovkp4xe.png)
a, b - legs
Substitute:
![A=((9)(12))/(2)=(108)/(2)=54\ (m^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/9wlwkaupz4ms0a5h939o2xv6hylpldiare.png)