Answer:
The solution is
.
Explanation:
An inequality is a mathematical relationship between two expressions and is represented using one of the following:
- ≤, "less than or equal to"
- <, "less than"
- >, "greater than"
- ≥, "greater than or equal to"
To find the solution of the inequality
you must:
![\mathrm{If}\:a>u>b\:\mathrm{then}\:a>u\quad \mathrm{and}\quad \:u>b\\\\0>20x+2\quad \mathrm{and}\quad \:20x+2>-32](https://img.qammunity.org/2021/formulas/mathematics/college/clbjtdpqw5e8me3x0bwf1av50228rhl5tl.png)
First, solve
![0>20x+2](https://img.qammunity.org/2021/formulas/mathematics/college/m03elsgs4ywboekv0idjpyjtx6hdsoq3f0.png)
![\mathrm{Switch\:sides}\\\\20x+2<0\\\\\mathrm{Subtract\:}2\mathrm{\:from\:both\:sides}\\\\20x+2-2<0-2\\\\\mathrm{Simplify}\\\\20x<-2\\\\\mathrm{Divide\:both\:sides\:by\:}20\\\\(20x)/(20)<(-2)/(20)\\\\\mathrm{Simplify}\\\\x<-(1)/(10)](https://img.qammunity.org/2021/formulas/mathematics/college/9feh58tp7qcixtw6s4duy50gsfu4t4r8b0.png)
Next, solve
![20x+2>-32](https://img.qammunity.org/2021/formulas/mathematics/college/z6r676o265rihx9wl2su2io1kvltc6njlj.png)
![20x+2-2>-32-2\\\\20x>-34\\\\(20x)/(20)>(-34)/(20)\\\\x>-(17)/(10)](https://img.qammunity.org/2021/formulas/mathematics/college/l13zn56x0edz6to4oegs9wrbhkoqcuyi6u.png)
Finally, combine the intervals
![x<-(1)/(10)\quad \mathrm{and}\quad \:x>-(17)/(10)\\\\-(17)/(10)<x<-(1)/(10)](https://img.qammunity.org/2021/formulas/mathematics/college/jvh7dch6lynn0tixzqmb7jotw6zn8aaawj.png)
The interval notation is
and the graph is: