Answer:
![x\in(-2,1)](https://img.qammunity.org/2021/formulas/mathematics/college/opyc172hr5b45yyqvs45swmzlyfx65yjhh.png)
Explanation:
We are given that a function
![f(x)=(x+2)(x-4)](https://img.qammunity.org/2021/formulas/mathematics/college/ciogy7lroi2ejxztegnttrvc04zwjjr4ov.png)
![f(x)=x^2-2x-8](https://img.qammunity.org/2021/formulas/mathematics/college/t61x5v280d908z67hs9tjo8yg82l2dwmd6.png)
Differentiate w.r.t x
![f'(x)=2x-2](https://img.qammunity.org/2021/formulas/mathematics/college/kw0dzmrb86aaytspbifpazy8g1qwt4wwl8.png)
![f'(x)=0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/g9whujp777ozdxwi2n7fbia58bzxuxemj9.png)
![2x-2=0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/z119okdzn8xgi3kbuuwq1x7fg5k6e0bi4s.png)
![2x=2\implies x=(2)/(2)=1](https://img.qammunity.org/2021/formulas/mathematics/college/aw4i1tij6202ainq9zdg604g3cgf7qgi9q.png)
Therefore, intervals
![(-\infty,1),(1,\infty)](https://img.qammunity.org/2021/formulas/mathematics/college/s1odgwh6la646aidya2xa4pfau1s2dm4zr.png)
Interval :
![(-\infty,1)](https://img.qammunity.org/2021/formulas/mathematics/college/1a2wdiakikv4pukww0kcx3zggjr1ojbfk4.png)
x=0
![f'(0)=-2<0](https://img.qammunity.org/2021/formulas/mathematics/college/uyj38myarjepoxuepbjqxomqjauni6m4ci.png)
Decreasing function.
Interval:
![(1,\infty)](https://img.qammunity.org/2021/formulas/mathematics/college/bvteinmug3gfcg80sg0s675mjcg0u6spy9.png)
Substitute x=2
![f'(2)=2(2)-2=2>0](https://img.qammunity.org/2021/formulas/mathematics/college/5kxopulwlyfpo2ts58n6koa0w4ns6ziuse.png)
Function increasing.
From given graph we can see that function is negative for the values of x
-2<x<4
Hence, the graph is negative and decreasing for the values of x
![x\in(-2,1)](https://img.qammunity.org/2021/formulas/mathematics/college/opyc172hr5b45yyqvs45swmzlyfx65yjhh.png)