The points are (3,k) and (5,6).
Given, distance = 2√2 units
Applying distance formula,
Distance = √(x2-x1)^2 + (y2-y1)^2
2√2 = √(x2-x1)^2 + (y2-y1)^2
Squaring both sides,
(2√2)^2 = [√(x2-x1)^2 + (y2-y1)^2]^2
8 = (x2-x1)^2 + (y2-y1)^2
8 = (5-3)^2 + (6-k)^2
8 = 2^2 + (6^2 - 2x6xk + k^2)
8 = 4 + 36 - 12k + k^2
8 = 40 - 12k + k^2
= k^2 - 12k + 32 = 0
On factorising,
=> k^2 - 4k - 8k + 32 = 0
=> k(k-4) -8(k-4) = 0
=> (k-4)(k-8) = 0
=> k-4 = 0 , k-8 = 0
=> k = 4 , k = 8