Answer:
a) 5.83 cm
b) 34.45°
Explanation:
a) From Pythagoras theorem of right triangles, given right triangle ABC:
AB² + BC² = AC²
Therefore:
AC² = 5² + 3²
AC² = 25 + 9 = 34
AC = √34
AC = 5.83 cm
b) From triangle ACD, AC = 5.83 cm, AD = 4 cm and ∠A = 90°.
From Pythagoras theorem of right triangles, given right triangle ACD:
AD² + AC² = DC²
Therefore:
DC² = 5.83² + 4²
DC² = 34 + 16 = 50
DC = √50
DC = 7.07 cm
Let ∠ACD be x. Therefore using sine rule:
![(4)/(sin(x))=(7.07)/(sin(90)) \\ sin(x)=(4*sin(90)))/(7.07)=0.5657\\ x=sin^(-1)(0.5657)\\x=34.45^o](https://img.qammunity.org/2021/formulas/mathematics/high-school/uogef0bvp5exlvzo40b6m4tcjxl5nva4au.png)