Answer:
2250m
Explanation:
![tangent=(opposite)/(adjacent)](https://img.qammunity.org/2021/formulas/mathematics/high-school/osji137fnrooen4qtab7oyblx85qi8n71u.png)
We have:
![\tan x^o=(3)/(4)\\\\\tan y^o=(5)/(7)](https://img.qammunity.org/2021/formulas/mathematics/high-school/mn1algbf20rbxj1itrn85ai6n5312b7s9j.png)
By definition of tangent, we have:
![\tan x^o=(AB)/(AC)\\\\\tan y^o=(AB)/(AC+150)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ozh9o574zky8yp6q36iyqaqk8keug4rjzl.png)
Therefore we have the system of equations:
![\left\{\begin{array}{ccc}(AB)/(AC)=(3)/(4)&(1)\\\\(AB)/(AC+160)=(5)/(7)&(2)\end{array}\right](https://img.qammunity.org/2021/formulas/mathematics/high-school/9hyvc0u4thoq6bez3oasrt23bk4m20fpb3.png)
From (1)
cross multiply
divide both sides by 3
![AC=(4AB)/(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/u7npqryu0lkqbwm6hcp1d2pzo3bjj3ull7.png)
Substitute it to (2):
![(AB)/((4AB)/(3)+150)=(5)/(7)\\\\(AB)/((4AB)/(3)+(3\cdot150)/(3))=(5)/(7)\\\\(AB)/((4AB)/(3)+(450)/(3))=(5)/(7)\\\\(AB)/((4AB+450)/(3))=(5)/(7)\\\\AB\cdot(3)/(4AB+450)=(5)/(7)](https://img.qammunity.org/2021/formulas/mathematics/high-school/q5a9pnupmplzejm7ul70ogz0pihyihu89g.png)
cross multiply
![(3AB)(7)=(5)(4AB+450)\\\\21AB=(5)(4AB)+(5)(450)](https://img.qammunity.org/2021/formulas/mathematics/high-school/qb23bnm4sr9h91ehehe6g2n24ncdi56h8w.png)
subtract 20AB from both sides
![AB=2250](https://img.qammunity.org/2021/formulas/mathematics/high-school/d7o2uhkt8t0a495w4h9mhkuy27kz1sb5yn.png)
Such a tower height is rather impossible, but this is the solution.