150k views
4 votes
Solve the given initial value problem. y triple prime plus 11 y double prime plus 38 y prime plus 40 y equals 0y′′′+11y′′+38y′+40y=0 y (0 )equals 0y(0)=0​, y prime (0 )equals negative 19y′(0)=−19​, y double prime (0 )equals 117

User Ghybs
by
5.7k points

1 Answer

6 votes

The linear homogeneous ODE


y'''+11y''+38y'+40y=0

has characteristic equation


r^3+11r^2+38r+40=0

which factors to


(r+2)(r+4)(r+5)=0

and hence has roots at
r=-2,-4,-5. So the characteristic solution to the ODE is


y_c=C_1e^(-2x)+C_2e^(-4x)+C_3e^(-5x)

Use the given initial conditions to solve for each C.


y(0)=0\implies C_1+C_2+C_3=0


y'(0)=-19\implies -2C_1-4C_2-5C_3=-19


y''(0)=4C_1+16C_2+25C_3=117


\implies C_1=-9,C_2=8,C_3=1

so that the particular solution is


\boxed{y(x)=-9e^(-2x)+8e^(-4x)+e^(-5x)}

User Razzie
by
6.0k points