Answer:
![\ S=\sqrt{(3V)/(H)}}](https://img.qammunity.org/2021/formulas/mathematics/college/o954lnlxrrx1z2jrim4nglrt5ounrllpyu.png)
Explanation:
The opposite operation of squaring is taking the square root.
![\ S=\sqrt{(3V)/(H)}}](https://img.qammunity.org/2021/formulas/mathematics/college/o954lnlxrrx1z2jrim4nglrt5ounrllpyu.png)
We know that the denominator of a fractional power is the index of the corresponding root:
![\displaystyle x^(1)/(n)=\sqrt[n]{x}](https://img.qammunity.org/2021/formulas/mathematics/college/9nyv1tfrldzh6moepf5rzzaozu3zxfd18k.png)
For n=2, we don't usually write the index in the root symbol:
![x^{(1)/(2)}=√(x)](https://img.qammunity.org/2021/formulas/mathematics/college/7qbfbn5li8uve1hfxuofw9ixd03tztabye.png)
In the case of this problem, ...
![(S^2)^{(1)/(2)}=\left((3V)/(H)\right)^{(1)/(2)}\\\\S=\sqrt{(3V)/(H)}](https://img.qammunity.org/2021/formulas/mathematics/college/ito10ph8ly33somfcad5pihsxr8c1c1jcj.png)