167k views
1 vote
The distribution of the scores on a certain exam is ​N(40​,5​), which means that the exam scores are Normally distributed with a mean of 40 and standard deviation of 5. a. Sketch the curve and​ label, on the​ x-axis, the position of the​ mean, the mean plus or minus one standard​ deviation, the mean plus or minus two standard​ deviations, and the mean plus or minus three standard deviations. b. Find the probability that a randomly selected score will be greater than 50. Shade the region under the Normal curve whose area corresponds to this probability.

User Jon Bright
by
8.0k points

1 Answer

4 votes

Answer:

Explanation:

Let x represent the random variable representing the scores in the exam. Given that the scores are normally distributed with a mean of 40 and a standard deviation of 5, the diagram representing the curve and​ the position of the​ mean, the mean plus or minus one standard​ deviation, the mean plus or minus two standard​ deviations, and the mean plus or minus three standard deviations is shown in the attached photo

1 standard deviation = 5

2 standard deviations = 2 × 5 = 10

3 standard deviations = 3 × 5 = 15

1 standard deviation from the mean lies between (40 - 5) and (40 + 5)

2 standard deviations from the mean lies between (40 - 10) and (40 + 10)

3 standard deviations from the mean lies between (40 - 15) and (40 + 15)

b) We would apply the probability for normal distribution which is expressed as

z = (x - µ)/σ

Where

x = sample mean

µ = population mean

σ = standard deviation

From the information given,

µ = 40

σ = 5

the probability that a randomly selected score will be greater than 50 is expressed as

P(x > 50) = 1 - P( ≤ x 50)

For x = 50,

z = (50 - 40)/5 = 2

Looking at the normal distribution table, the probability corresponding to the z score is 0.98

P(x > 50) = 1 - 0.98 = 0.02

The distribution of the scores on a certain exam is ​N(40​,5​), which means that the-example-1
User AlexGad
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories