27.8k views
5 votes
If the interval (a, infinity) describes all values of x for which the graph of f(x)=4/x^2-6x+9 is decreasing, what is the value of a

User Vicentazo
by
4.6k points

2 Answers

2 votes

Answer:

3

Explanation:

User Calebe
by
4.9k points
1 vote

Answer:

The answer is "3".

Explanation:


\texttt{Given graph equation: } \\\\\bold{\Rightarrow f(x)=(4)/(x^2-6x+9) }


\bold{\ interval: (a,\infty)}

differentiate the function f(x):


\Rightarrow f'(x) = (d )/(dx)((4)/(x^2-6x+9))\\\\

Formula:


\bold{(d)/(dx) (v)/(u)= (u (d)/(dx) v- v(d)/(dx)u )/(u^2)}


\Rightarrow f'(x) = (d )/(dx)((4)/(x^2-6x+9))\\\\\\\Rightarrow f'(x) = (d )/(dx)(((x^2-6x+9) (d)/(dx) 4- 4(d)/(dx)(x^2-6x+9) )/((x^2-6x+9)^2))\\\\\\\Rightarrow f'(x) = (d )/(dx)(((x^2-6x+9) * 0 - 4(2x-6) )/((x^2-6x+9)^2))\\\\\\\Rightarrow f'(x) = (- 4(2x-6))/((x^2-6x+9)^2)\\\\\\\Rightarrow (- 4(2x-6))/((x^2-6x+9)^2)=0\\\\\Rightarrow - 4(2x-6)=0\\\\\Rightarrow 8x-24=0\\\\\Rightarrow 8x=24\\\\\Rightarrow x=(24)/(8)\\\\\Rightarrow x=3\\\\

since the value of x in:
(-3 ,\infty) \ \ and \ \ (3, \infty) and
f'(x) <= 0\\. So, the value of a is 3

User Drexin
by
3.8k points