91.7k views
4 votes
Drag the tiles to the boxes to form correct pairs. Not all tiles will be used.

Match the pairs of equations that represent concentric circles.
3x2 + 3y2 + 12x − 6y − 21 = 0
5x2 + 5y2 − 10x + 40y − 75 = 0
5x2 + 5y2 − 30x + 20y − 10 = 0
4x2 + 4y2 + 16x − 8y − 308 = 0
x2 + y2 − 12x − 8y − 100 = 0
2x2 + 2y2 − 8x + 12y − 40 = 0
4x2 + 4y2 − 16x + 24y − 28 = 0
3x2 + 3y2 − 18x + 12y − 81 = 0
x2 + y2 − 2x + 8y − 13 = 0
x2 + y2 + 24x + 30y + 17 = 0

1 Answer

2 votes

Answer:

Following are the concentric circle represent:

Explanation:

Given values:


3x^2 + 3y^2 + 12x - 6y - 21 = 0\\5x^2 + 5y^2 - 10x + 40y - 75 = 0\\5x^2 + 5y^2 - 30x + 20y - 10 = 0\\4x^2 + 4y^2 + 16x - 8y - 308 = 0\\x^2 + y^2 -12x - 8y - 100 = 0\\2x^2 + 2y^2 - 8x + 12y - 40 = 0\\4x^2 + 4y^2 - 16x + 24y - 28 = 0\\3x^2 + 3y^2 - 18x + 12y - 81 = 0\\x^2 + y^2 - 2x + 8y -13 = 0\\x^2 + y^2 + 24x + 30y + 17 = 0\\

Following are the concentric value:


\Rightarrow 3x^2 + 3y^2 + 12x - 6y - 21 = 0 \leftrightarrow 4x^2 + 4y^2 + 16x - 8y - 308 = 0 \\\\


\Rightarrow 5x^2 + 5y^2 - 10x + 40y -75 = 0 \leftrightarrow x^2 + y^2 - 2x + 8y- 13 = 0\\\\


\Rightarrow 5x^2 + 5y^2 - 30x + 20y - 10 = 0 \leftrightarrow 3x^2 + 3y^2 - 18x + 12y - 81 = 0 \\\\


\Rightarrow 2x^2 + 2y^2 - 8x + 12y - 40 = 0 \leftrightarrow 4x^2 + 4y^2 - 16x + 24y - 28 = 0

User Roast
by
4.9k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.