162k views
4 votes
Given sin(−θ)=−1/6 and tanθ=−√35/35 What is the value of cosθ?

User Nitha
by
6.1k points

1 Answer

2 votes

Answer:


cos(\theta)=-(√(35) )/(6)

Explanation:

Recall the negative angle identity for the sine function:


sin(- \theta)=-sin(\theta)

Then, we can find the value of
sin(\theta):


sin(\theta)=-sin(-\theta)\\sin(\theta) =-(-(1)/(6) )\\sin(\theta)= (1)/(6)

Now recall the definition of the tangent function:


tan(\theta)=(sin(\theta))/(cos(\theta))

Therefore, now that we know the value of
sin(\theta), we can solve in this equation for
cos(\theta)


tan(\theta)=(sin(\theta))/(cos(\theta))\\-(√(35) )/(35) =(1/6)/(cos(\theta)) \\cos(\theta)=-((1)/(6) )/((√(35) )/(35) ) \\cos(\theta)=-(35)/(6\,√(35) ) \\cos(\theta)=-(√(35) )/(6)

User Filo Stacks
by
6.4k points