Answer:
The sequence is of the form
9 , 13 , 17 , 21 , 25 ,29
Explanation:
Explanation:-
Step(i):-
Given sequence , ___, __17_ ,___,___ 29
The third term = 17
a + (3-1)d = 17
a + 2 d = 17 ...(i)
The sixth term = 29
a + (6-1)d =29
a + 5 d = 29 ...(ii)
solving (i) and (ii) equations
Subtracting (i) and (ii) equations , we get
a + 2 d -a -5 d = 17 -29
- 3 d = - 12
d =4
Substitute 'd' =4 in equation (i)
a + 2 d = 17
a + 2(4) =17
a = 17 -8 = 9
Step(ii):-
The arithmetic sequence
a , a+d , a+2 d , a+ 3 d , a+ 4 d , a+5 d
9 , 9 + 4, 9 +2 (4) , 9+3(4) , 9 +4(4) , 9+5(4)
9 , 13 , 17 , 21 , 25 ,29
Conclusion:-
The sequence is of the form
9 , 13 , 17 , 21 , 25 ,29