216k views
20 votes
Which one does it simplify to? please

Which one does it simplify to? please-example-1

2 Answers

11 votes

Answer:


1 + { \sin} \theta

Explanation:


\frac{ { \cos}^(2) \theta}{1 - \sin \theta} \\ \\ = \frac{ { \cos}^(2) \theta}{(1 - \sin \theta)} * ((1 + \sin \theta))/((1 + \sin \theta)) \\ \\ = \frac{{ \cos}^(2) \theta(1 + { \sin} \theta)}{(1 - { \sin}^(2) \theta)} \\ \\ = \frac{{ \cancel{ \cos}^(2) \theta}(1 + { \sin} \theta)}{ \cancel{{ \cos}^(2) \theta}} \\ \\ = 1 + { \sin} \theta

User Abhishek Yadav
by
4.0k points
7 votes

Let's see


\\ \rm\Rrightarrow (cos^2\theta)/(1-sin\theta)


\\ \rm\Rrightarrow (1-sin^2\theta)/(1-sin\theta)

  • (a+b)(a-b)=a²-b²


\\ \rm\Rrightarrow ((1-sin\theta)(1+sin\theta))/(1-sin\theta)[/tex]


\\ \rm\Rrightarrow 1+sin\theta

Option A

User Stanze
by
4.0k points