146k views
5 votes
Simplify fully
6x2 +x–1 4x2 – 1

Simplify fully 6x2 +x–1 4x2 – 1-example-1
User Zafer
by
8.6k points

1 Answer

6 votes

Answer:

​3x−1

Explanation:

1 Split the second term in 6{x}^{2}+x-16x

​2

​​ +x−1 into two terms.

\frac{6{x}^{2}+3x-2x-1}{4{x}^{2}-1}

​4x

​2

​​ −1

​6x

​2

​​ +3x−2x−1

​​

2 Factor out common terms in the first two terms, then in the last two terms.

\frac{3x(2x+1)-(2x+1)}{4{x}^{2}-1}

​4x

​2

​​ −1

​3x(2x+1)−(2x+1)

​​

3 Factor out the common term 2x+12x+1.

\frac{(2x+1)(3x-1)}{4{x}^{2}-1}

​4x

​2

​​ −1

​(2x+1)(3x−1)

​​

4 Rewrite 4{x}^{2}-14x

​2

​​ −1 in the form {a}^{2}-{b}^{2}a

​2

​​ −b

​2

​​ , where a=2xa=2x and b=1b=1.

\frac{(2x+1)(3x-1)}{{(2x)}^{2}-{1}^{2}}

​(2x)

​2

​​ −1

​2

​​

​(2x+1)(3x−1)

​​

5 Use Difference of Squares: {a}^{2}-{b}^{2}=(a+b)(a-b)a

​2

​​ −b

​2

​​ =(a+b)(a−b).

\frac{(2x+1)(3x-1)}{(2x+1)(2x-1)}

​(2x+1)(2x−1)

​(2x+1)(3x−1)

​​

6 Cancel 2x+12x+1.

\frac{3x-1}{2x-1}

​2x−1

​3x−1

​​

User Vasyl Sarzhynskyi
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories