Answer:
d) Z= -1.49
Explanation:
sample #1 ----->
first sample size,
![n_1= 85](https://img.qammunity.org/2021/formulas/mathematics/college/8kbom4ydus9ixv73abh4bpqo086webij5p.png)
number of successes, sample 1 =
![x_1= 17](https://img.qammunity.org/2021/formulas/mathematics/college/ffma0exn779etlqkd0myfdkhm8cw1n1srx.png)
proportion success of sample 1 ,
sample #2 ----->
second sample size,
![n_2 = 80](https://img.qammunity.org/2021/formulas/mathematics/college/kz31mi97mdjnii0c4tyx2a30hge6eei0ug.png)
number of successes, sample 2 =
![x_2 = 24](https://img.qammunity.org/2021/formulas/mathematics/college/nyc2rjvyjbp7e0t4h1h9bdlmw8eux92iyp.png)
proportion success of sample 1 ,
difference in sample proportions,
![\bar p_1 - \bar p_2 = 0.2000 - 0.3000 \\\\= -0.1000](https://img.qammunity.org/2021/formulas/mathematics/college/n5sbfycm94jopys2zcbd81565pt63yu0pn.png)
pooled proportion ,
![p = ( (x_1+x_2))/((n_1+n_2))\\\\= 0.2484848](https://img.qammunity.org/2021/formulas/mathematics/college/nxahbyj2ez7hp2qq7xd07fowsakl4ywchd.png)
std error ,
![SE=\sqrt{p*(1-p)*((1)/(n_1)+(1)/(n_2) )} \\\\=0.06731](https://img.qammunity.org/2021/formulas/mathematics/college/kl9mzc7g3e57jid6xicxhle64941wnnixq.png)
Z-statistic =
![(\bar p_1 - \bar p_2)/SE = ( -0.100 / 0.0673 ) = -1.49](https://img.qammunity.org/2021/formulas/mathematics/college/jrfius9ximgraxs6z8jme0iuxrkn4r1rxt.png)