Answer:
Explanation:
Hello!
X₁: speed of a motorcycle at a certain intersection.
n₁= 135
X[bar]₁= 33.99 km/h
S₁= 4.02 km/h
X₂: speed of a car at a certain intersection.
n₂= 42 cars
X[bar]₂= 26.56 km/h
S₂= 2.45 km/h
Assuming
X₁~N(μ₁; σ₁²)
X₂~N(μ₂; σ₂²)
and σ₁² = σ₂²
A 90% confidence interval for the difference between the mean speeds, in kilometers per hour, of motorcycles and cars at this intersection is ________.
The parameter of interest is μ₁-μ₂
(X[bar]₁-X[bar]₂)±
*
![Sa\sqrt{(1)/(n_1) +(1)/(n_2) }](https://img.qammunity.org/2021/formulas/mathematics/college/gqtjxhqk50g25ptgc9r05bbtp0kpa2mvk7.png)
![t_(n_1+n_2-2;1-\alpha /2)= t_(175; 0.95)= 1.654](https://img.qammunity.org/2021/formulas/mathematics/college/eq2sj1z6btv4io5h4frn2em4n1m4uw7s2e.png)
![Sa= \sqrt{((n_1-1)S_1^2+(n_2-1)S_2^2)/(n_1+n_2-2) } = \sqrt{(134*16.1604+41*6.0025)/(135+42-2) } = 3.71](https://img.qammunity.org/2021/formulas/mathematics/college/983oxblebe20jjz2ohkzhb11rs1hwii7i4.png)
[(33.99-26.56) ± 1.654 *(
)]
[6.345; 8.514]= [6.35; 8.51]km/h
Construct the 98% confidence interval for the difference μ₁-μ₂ when X[bar]₁= 475.12, S₁= 43.48, X[bar]₂= 321.34, S₂= 21.60, n₁= 12, n₂= 15
![t_(n_1+n_2-2;1-\alpha /2)= t_(25; 0.99)= 2.485](https://img.qammunity.org/2021/formulas/mathematics/college/1h4nm51cwiwoiqr4alamhaw2se19fqjbzt.png)
![Sa= \sqrt{((n_1-1)S_1^2+(n_2-1)S_2^2)/(n_1+n_2-2) } = \sqrt{(11*(43.48)^2+14*(21.60)^2)/(12+15-2) } = 33.06](https://img.qammunity.org/2021/formulas/mathematics/college/2h5c7pzmp743vm34w4czexys7ruw346dhl.png)
[(475.12-321.34) ± 2.485 *(
)]
[121.96; 185.60]
I hope this helps!