51.9k views
0 votes
The label on a battery-powered radio recommends the use of a rechargeable nickel-cadmium cell (nicads), although it has a 1.25-V emf, whereas an alkaline cell has a 1.58-V emf. The radio has a 3.65 Ω resistance. How much more power is delivered to the radio by alkaline cell, which has an internal resistance of 0.200Ω than by an nicad cell, having an internal resistance of 0.0.040Ω?

1 Answer

1 vote

Answer:

0.2 W more power than nicad cell is delivered by alkaline cell

Step-by-step explanation:

FOR NICKEL-CADMIUM CELL (nicads):

First we find the current supplied to radio by the cell. For this purpose, we use the formula:

I = E/(R+r)

where,

I = current supplied

E = emf of cell = 1.25 V

R = resistance of radio = 3.65 Ω

r = internal resistance of cell = 0.04 Ω

Therefore,

I = (1.25 V)/(3.65 Ω + 0.04 Ω)

I = 0.34 A

Now, we calculate the power delivered to radio by following formula:

P = VI

but, from Ohm's Law: V = IR

Therefore,

P = I²R

where,

P = Power delivered = ?

I = current = 0.34 A

R = Resistance of radio = 3.65 Ω

Therefore,

P = (0.34 A)²(3.65 Ω)

P = 0.41 W

FOR ALKALINE CELL:

First we find the current supplied to radio by the cell. For this purpose, we use the formula:

I = E/(R+r)

where,

I = current supplied

E = emf of cell = 1.58 V

R = resistance of radio = 3.65 Ω

r = internal resistance of cell = 0.2 Ω

Therefore,

I = (1.58 V)/(3.65 Ω + 0.2 Ω)

I = 0.41 A

Now, we calculate the power delivered to radio by following formula:

P = VI

but, from Ohm's Law: V = IR

Therefore,

P = I²R

where,

P = Power delivered = ?

I = current = 0.41 A

R = Resistance of radio = 3.65 Ω

Therefore,

P = (0.41 A)²(3.65 Ω)

P = 0.61 W

Now, fo the difference between delivered powers by both cells:

ΔP = (P)alkaline - (P)nicad

ΔP = 0.61 W - 0.41 W

ΔP = 0.2 W

User Barak Schiller
by
4.9k points