Answer:
displacement x = - 0.046sin4t +0.006cos4t
Explanation:
The model of the equation of motion is a forced motion equation and to determine the displacement of the weight as a function of time; we have:
the weight balances of the elastic force in the spring to be expressed by the relation:
mg = kx
where;
x=4 in (i.e 1/3 ft )
mass m = 6lb
let make k the subject; then:
k = mg/x = 6×32/(1/3) = 576
assuming x to be the displacement form equilibrium;
Then;
![F = 27sin 4t-3cos4t +k(x+1/3) - mg -3v](https://img.qammunity.org/2021/formulas/mathematics/college/miovgpkiwfr3eatf7qnyxkd1gdr3glkpy8.png)
(since F(t)=27sin 4t-3cos4t somehow faces downwards, mg=downwards and k(x+1/3)= upwards and medium resistance 3v = upwards)
SO;
![d2x/dt2 = 27sin 4t-3cos4t +kx - 3dx/dt](https://img.qammunity.org/2021/formulas/mathematics/college/bjbex0zv43dbypc0wr7pgfavdmtwkw2ui2.png)
![d2x/dt2 +3dx/dt - 576x = 27sin 4t-3cos4t](https://img.qammunity.org/2021/formulas/mathematics/college/zl75w6pzab77z5f56hud799h8lb700pbps.png)
Assuming :
![x = asin4t + bcos4t](https://img.qammunity.org/2021/formulas/mathematics/college/531sihooq98yiqjl7xyjzsjzpr2bob9bss.png)
![dx/dt = 4acos4t - 4bsin4t](https://img.qammunity.org/2021/formulas/mathematics/college/4udm05ld7ez8wh7u1f72xn93s1ouaa8ql1.png)
![d2x/dt2 = -16asin4t - 14bcos4t](https://img.qammunity.org/2021/formulas/mathematics/college/1y4obf39x6jguo748btl1qxc0q0pnxbj3f.png)
replacing these values in the above equation
![= -16asin4t - 14bcos4t + 12acos4t - 12bsin4t -576asin4t-576bcos4t = 27sin 4t-3cos4t](https://img.qammunity.org/2021/formulas/mathematics/college/hq6a4ax3go8mubf1v3vjxheqddh8o92hzx.png)
![= sin4t (-592a-12b) + cos4t(12a -590b) = 27sin 4t-3cos4t](https://img.qammunity.org/2021/formulas/mathematics/college/w7gguhi4gkwh132o9h9khkjwa4lib2fd6f.png)
equating sin and cos terms
a = - 0.046 ; b = 0.006
displacement x = - 0.046sin4t +0.006cos4t