Answer:
a.18.5 m/s
b.1.98 s
Step-by-step explanation:
We are given that
![\theta=35^(\circ)](https://img.qammunity.org/2021/formulas/physics/college/ifzmbk9npl3e9ld3yoo4wg74pzs83tcglt.png)
a.Let
be the initial velocity of the ball.
Distance,x=30 m
Height,h=1.8 m
![v_x=v_0cos\theta=v_0cos35](https://img.qammunity.org/2021/formulas/physics/college/ww4ftieo0yisguelzl29hazci004aocv4d.png)
![v_y=v_0sin\theta=v_0sin35](https://img.qammunity.org/2021/formulas/physics/college/g1iztw0ehvypnar83ldjdvxisqkco7tsgw.png)
![x=v_0cos\theta* t=v_0cos35* t](https://img.qammunity.org/2021/formulas/physics/college/ej55qmb11jzac1hauu45kd0439vzmnpnpb.png)
![t=(30)/(v_0cos35)](https://img.qammunity.org/2021/formulas/physics/college/8z3p5h9ctj18snriwtdjfyr0w51f4tg00t.png)
![h=v_yt-(1)/(2)gt^2](https://img.qammunity.org/2021/formulas/physics/college/8fvyii8934vwslqetayhymdmkpxve6flq2.png)
Substitute the values
![1.8=v_0sin35(30)/(v_0cos35)-(1)/(2)(9.8)((30)/(v_0cso35))^2](https://img.qammunity.org/2021/formulas/physics/college/dl2nvqs4y0b3m1weeb7ykpt7y04l44kfe1.png)
![1.8=30tan35-(6574.6)/(v^2_0)](https://img.qammunity.org/2021/formulas/physics/college/7s5ohmpwjpqf6c8i95fuck0cuysq03lap9.png)
![(6574.6)/(v^2_0)=21-1.8=19.2](https://img.qammunity.org/2021/formulas/physics/college/ysj98xe3f7k3pm8egnrpcgrk6ltyhwim25.png)
![v^2_0=(6574.6)/(19.2)](https://img.qammunity.org/2021/formulas/physics/college/8ivdll7jo75nfbwymh3xmhzlsphutykvy8.png)
![v_0=\sqrt{(6574.6)/(19.2)}=18.5 m/s](https://img.qammunity.org/2021/formulas/physics/college/iblilfksk2isjulwqz4l780jwk6iie41ep.png)
Initial velocity of the ball=18.5 m/s
b.Substitute the value then we get
![t=(30)/(18.5cos35)](https://img.qammunity.org/2021/formulas/physics/college/nwehtn2oa1wkazztjnvos7yw8ycb3u4gso.png)
t=1.98 s
Hence, the time for the ball to reach the target=1.98 s